1,167 research outputs found

    Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface

    Get PDF
    AbstractThe influenza B virus BM2 protein contains 109 amino acid residues and it is translated from a bicistronic mRNA in an open reading frame that is +2 nucleotides with respect to the matrix (M1) protein. The amino acid sequence of BM2 contains a hydrophobic region (residues 7–25) that could act as a transmembrane (TM) anchor. Analysis of properties of the BM2 protein, including detergent solubility, insolubility in alkali pH 11, flotation in membrane fractions, and epitope-tagging immunocytochemistry, indicates BM2 protein is the fourth integral membrane protein encoded by influenza B virus in addition to hemagglutinin (HA), neuraminidase (NA), and the NB glycoprotein. Biochemical analysis indicates that the BM2 protein adopts an NoutCin orientation in membranes and fluorescence microscopy indicates BM2 is expressed at the cell surface. As the BM2 protein possesses only a single hydrophobic domain and lacks a cleavable signal sequence, it is another example of a Type III integral membrane protein, in addition to M2, NB, and CM2 proteins of influenza A, B, and C viruses, respectively. Chemical cross-linking studies indicate that the BM2 protein is oligomeric, most likely a tetramer. Comparison of the amino acid sequence of the TM domain of the BM2 protein with the sequence of the TM domain of the proton-selective ion channel M2 protein of influenza A virus is intriguing as M2 protein residues critical for ion selectivity/activation and channel gating (H37 and W41, respectively) are found at the same relative position and spacing in the BM2 protein (H19 and W23)

    Localization and characterization of somatostatin binding sites in the mouse retina

    Full text link
    We studied the binding of [125I]Tyr11-somatostatin-14 and [125I]Leu8,-Trp22, Tyr25-somatostatin-28 to frozen, unfixed sections of C57BL/6J mouse eyes with autoradiography. Specific binding of both ligands occurred in 3 maxima, a broad band extending from the retinal ganglion cell to the inner nuclear layers, a narrow and inconstant band over the outer plexiform layer, and a band over the retinal pigment epithelium and choroid. We quantified the label over the inner plexiform layer and found evidence for a single, saturable binding site after Scatchard analysis of saturation binding data. With [125I]Tyr11-somatostatin-14 the dissociation constant (Kd) was 1.48 nM and the total number of binding sites (Bmax) was 68 fmol/mg protein; in competition experiments the inhibitory binding constant (Ki) was 900 pM for somatostatin-14 and 350 pM for somatostatin-28. With [125I]Leu8,-Trp22, Tyr25-somatostatin-28, Kd was 625 pM and Bmax was 69 fmol/mg protein: in competition experiments Ki was 4.58 nM for somatostatin-14 and 710 pM for somatostatin-28. These results demonstrate the existence of somatostatin receptors in the inner plexiform layer of the retina that appear to have greater specificity for somatostatin-28 than for somatostatin-14.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28093/1/0000540.pd

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Evidence-based effect size estimation:An illustration using the case of acupuncture for cancer-related fatigue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimating a realistic effect size is an important issue in the planning of clinical studies of complementary and alternative medicine therapies. When a minimally important difference is not available, researchers may estimate effect size using the published literature. This evidence-based effect size estimation may be used to produce a range of empirically-informed effect size and consequent sample size estimates. We provide an illustration of deriving plausible effect size ranges for a study of acupuncture in the relief of post-chemotherapy fatigue in breast cancer patients.</p> <p>Methods</p> <p>A PubMed search identified three uncontrolled studies reporting the effect of acupuncture in relieving fatigue. A separate search identified five randomized controlled trials (RCTs) with a wait-list control of breast cancer patients receiving standard care that reported data on fatigue. We use these published data to produce best, average, and worst-case effect size estimates and related sample size estimates for a trial of acupuncture in the relief of cancer-related fatigue relative to a wait-list control receiving standard care.</p> <p>Results</p> <p>Use of evidence-based effect size estimation to calculate sample size requirements for a study of acupuncture in relieving fatigue in breast cancer survivors relative to a wait-list control receiving standard care suggests that an adequately-powered phase III randomized controlled trial comprised of two arms would require at least 101 subjects (52 per arm) if a strong effect is assumed for acupuncture and 235 (118 per arm) if a moderate effect is assumed.</p> <p>Conclusion</p> <p>Evidence-based effect size estimation helps justify assumptions in light of empirical evidence and can lead to more realistic sample size calculations, an outcome that would be of great benefit for the field of complementary and alternative medicine.</p

    Ultracool dwarf benchmarks with \emph{Gaia} primaries

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We explore the potential of \emph{Gaia} for the field of benchmark ultracool/brown dwarf companions, and present the results of an initial search for metal-rich/metal-poor systems. A simulated population of resolved ultracool dwarf companions to \emph{Gaia} primary stars is generated and assessed. Of order \sim24,000 companions should be identifiable outside of the Galactic plane (b>10|b| > 10\,deg) with large-scale ground- and space-based surveys including late M, L, T, and Y types. Our simulated companion parameter space covers 0.02M/M0.10.02 \le M/M_{\odot} \le 0.1, 0.1age/Gyr140.1 \le {\rm age/Gyr} \le 14, and 2.5[Fe/H]0.5-2.5 \le {\rm [Fe/H]} \le 0.5, with systems required to have a false alarm probability 0.6\, kau}\,Peer reviewedFinal Accepted Versio

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Get PDF
    BACKGROUND: Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1) the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2) the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3) the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. METHODS: The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1) noradrenaline in the ganglion compartment; 2) LH in the ovarian compartment; and 3) noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline) was also measured in the ovarian compartment by HPLC. RESULTS: The most relevant result concerning the action of noradrenaline in the celiac ganglion was found on day 21 of pregnancy resulting in the inhibition of androstenedione release from the ovarian compartment. In addition on day 15 of pregnancy, LH placed in the ovarian compartment led to an inhibition of the release of androstenedione, and this inhibitory effect was further reinforced by the joint action of noradrenaline in the celiac ganglion and LH in the ovary. The levels of catecholamines in the ovarian compartment showed differences among the experiments; of significance, the joint treatment of noradrenaline in the celiac ganglion and LH in the ovary resulted in a remarkable increase in the ovarian levels of noradrenaline and adrenaline when compared to the effect achieved by either one of the compounds added alone. CONCLUSION: Our results demonstrate that the noradrenergic stimulation of the celiac ganglion reinforces the LH-induced inhibition of androstenedione production by the ovary of late pregnant rats, and that this effect is associated with marked changes in the release of catecholamines in the ovary

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore